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Motivation 

Study Earth from space to improve our scientific understanding of global climate change; derive 
geophysical parameters of surface and atmosphere from satellite hyperspectral IR measurements. 
•  Long-term and large-scale observations, needed for global change monitoring and other research, can only 

be supplied by satellite remote sensing.  
•  IR hyperspectral radiance measurements are available from current AIRS (since May 2002) and IASI  

(October 2006), and CrIS will be available from future operational weather satellites. 
•  Generate an emissivity climatology dataset from satellite data in 

1)  helping to understand the nature of radiative transfer process for the Earth and atmospheric 
environment, 

2)  assisting assimilation of hyperspectral IR radiances in NWP models,  
3)  improving retrieval accuracy for other thermodynamic parameters (e.g., Ts, T, H2O, CO, CO2, O3 …), 
4)  helping surface skin temp retrieval from other satellite broad-band measurements (e.g., GOES-R/ABI),  
5)  improving accuracy of surface radiation budget calculation for climate studies, and 
6)  long-term monitoring of the global environment and climate change.   
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Part A: Regression Retrieval (Zhou et al., GRL 2005) 
Using an all-seasonal-globally representative training database to diagnose 0-2 cloud layers from training 
relative humidity profile: 

A single cloud layer is inserted into the input training profile. Approximate lower level cloud using 
opaque cloud representation. 

Use parameterization of balloon and aircraft cloud microphysical data base to specify cloud effective particle 
diameter and cloud optical depth: 

Different cloud microphysical properties are simulated for same training profile using random number 
generator to specify visible cloud optical depth within a reasonable range. Different habitats can be 
specified (Hexagonal columns assumed here). 

Use LBLRTM/DISORT “lookup table” to specify cloud radiative properties: 
Spectral transmittance and reflectance for ice and liquid clouds interpolated from multi-dimensional look-
up table based on DISORT multiple scattering calculations. 

Compute EOFs and Regressions from clear, cloudy, and mixed radiance data base: 
Regress cloud, surface properties & atmospheric profile parameters against radiance EOFs amplitudes. 

Part B: 1-D Var. Variational Retrieval (Zhou et al., JAS 2007) 
A one-dimensional (1-d) variational solution with the regularization algorithm is used for physical retrieval 
methodology which uses the regression solution as the initial guess. 
Cloud optical and microphysical parameters, namely effective particle diameter and visible optical thickness 
are further refined with the radiances observed within the 10.4 to 12.5 µm window.  

IR-only Retrieval Algorithm 



 Emissivity (εν) is linear to Radiance (Rν) 



Training Dataset & Emissivity Regression  

•  Lab. measured emis. converted to emis. logarithm function F(ε) 
to constrain emis. retrieval. 

•  A set of emis. logarithm functions are used to calculate its 
Eigenvectors and their amplitudes. Emis. amplitudes are used 
with other other parameters as a state vector to calculate 
radiance.  

•  A set of radiances are used to calculate its Eigenvectors and 
their amplitudes. 

•  Regression coefficients are generated using a training database 
(state vector) and their associated radiances. State vector is 
retrieved with measured radiance. Functional emis. EOF 
amplitudes are part of the state vector. 

•  Emissivity spectrum is calculated with retrieved emis. EOF 
amplitudes (i.e., functional emis. PC scores). 

Atmospheric : 
Surface : 

Cloud : 

An all-seasonal-globally representative training database (UW SeeBor Database). 
Ts=Ta+Tδ, where Tδ is a random number generated value with a mean of 0 K and a STD of 3 
K over water and 10 K over land. ε is randomly assigned to profile from ε database. 
Use parameterization of balloon and aircraft cloud microphysical data base to specify cloud 
effective particle size and cloud optical depth using random number generator to specify 
visible cloud optical depth within a reasonable range.  



Cloud Detection within Retrieval 

Note: φ = 0, 1, and 2 are for clear sky, ice cloud, and water clouds, 
respectively; and Hc is cloud top height relative to surface, φ is cloud 
phase, and τcld is cloud visible optical depth. Regression with 

“mixed” coefficients 

φ ≤ 0.8, and  
τcld ≤ 0.007 

Regression with 
“clear” coefficients 

Regression with 
“cloud” coefficients 

[Hc > 2.0 km and τcld ≤ 0.2], or  
[Hc ≤ 2.0 km and τcld ≤ 0.8].  

No 

Yes 

Yes 

No Cloud detected 

Cloud undetected 

Multi-stage regression retrievals are performed. The first-stage involves mixed (i.e., clear and cloudy) 
regression. The second-stage (e.g., either clear or cloudy) depends on the cloud detection criteria that are 
based on first-stage retrieved cloud parameters. 



APC paper: AIRS vs. IASI (4/29/2007) 
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IASI vs. Sonde 

The field evolution is subtle while the atmospheric variation from location 
to location is strong. 



Emis. Accuracy Estimation Under Clear-sky 

Note:  since the emissivity is linear to channel radiances, we chose to use retrieved emissivity from linear 
EOF regression, not further retrieved in physical iteration. However, if the physical retrieval is 
performed for other parameters, emissivity will be further refined through physical iteration.  

•  The emissivity assigned to each training 
profile is randomly selected from a laboratory 
measured emissivity database, indicated in 
panel a, and has a wide variety of surface 
types suitable for different geographical 
locations. The vertical bars show the 
emissivity STD for this dataset.  

•  Estimated surface emissivity retrieval 
accuracy, the mean difference (or bias) in 
curve and the STDE in vertical bars shown in 
panel b, is training data dependent.  

•  Surface skin temperature is one of the most 
“coupled” parameters with emissivity, it is 
necessary to mention that skin temperature 
retrieval accuracy has a -0.035 K bias with a 
1.11 K STDE from the same analysis 

(a) Emissivity training variability 

(b) Emissivity retrieval accuracy 



Emis. Ret. and Rad. Fitting Samples 

It demonstrates that the technique separates surface emissivity from skin temperature: 
Samples shown are for both day and night observations over the Sahara Desert. Simulated spectral radiances 
(with rtv emis in red curves; emis of 1 in green curves) are plotted in comparison with the measurements 
(blue curves). Retrieved surface emissivity spectra are plotted in the bottom panels with IASI day and night 
observations, respectively.   

Over Sahara (Lat.=23.38°N; Lon.=24.41°E);  
Daytime (SZA=30.5°), 2007.08.01      

Over Sahara (Lat.=23.41°N; Lon.=24.83°E);  
Nighttime (SZA=120.6°), 2007.08.01 

Ts = 322.6 K Ts = 303.2 K 



Namib and Kalahari Deserts for Validation  

Kalahari:   Lat.= 24.75 S, Lon.=15.3 E 

Namib:   Lat.= 26.35 S, Lon.=20.7 E 



Namib and Kalahari Deserts for ε Validation 

G. C. Hulley, S. J. Hook, E. Manning, S.-
Y. Lee, and E. Fetzer, “Validation of the 
Atmospheric Infrared Sounder (AIRS) 
version 5 land surface emissivity product 
over Namib and Kalahari deserts,” J. 
Geophys. Res., vol. 114, no. D1, pp. 
9104.1–9104.11, Oct. 2009.  

•  Kalahari: The majority of the sand lies 
on the level plains of the Kalahari 
Basin, sand dunes mixed with grassy 
scrublands and sparse trees. 

•  Namib: The vast expanse of shifting 
dunes is almost completely devoid of 
vegetation except for sparse perennial 
grasses. 

•  Different sand mineralogy from Namib 
to Kalahari sites. 



Emissivity Validation / Evaluation 

•  We will use the Namib site for absolute validation 
and the Kalahari site for relative spectral-shape 
validation. 

•  The quartz-doublet region from the Namib to the 
Kalahari site, is well captured by retrievals, due to 
the different sand mineralogy at these 2 sites.  

Namib Site 

Kalahari Site 



Cloud filtering and “outlier” rejection: 
•  Due to cloud coverage, not every measurement can provide surface 

parameters; however, the surface parameters can be retrieved under 
optically thin clouds with a relatively poor accuracy in comparison 
with that retrieved under clear-sky conditions.  

•  The surface emissivity composition can be assembled over a period 
of time and area. Single retrievals within a spatial grid (area) 
meeting the Quality Filter criteria will be taken to generate a mean 
emissivity.  

“Quality” Filter for Global Assembled Mean  

    

€ 

"Q. F."  criteria are listed as :
   1.  τ cld ≤ 0.5 ,

   2.  A1
F − A1

F ≤ std( A1
F ) ,  and

   3.  A2
F − A2

F ≤ std( A2
F ) .

All Retrievals (149 rtv.) Pass filter 1 (137 rtv.) Pass filter 1-2 (92 rtv.) 

April 2009 – Rub’ al Khali, Saudi Arabia [21.25° < lat. ≤ 21.75°;  54.25° < lon. ≤ 54.75°]  

Pass filter 1-3 (65 rtv.) 



Cloud Effects on Retrievals: Asia - China 

Data used:  IASI measurements July 2007-2010 (four-years) 

ν = 950 cm-1 ν = 1140 cm-1 ν = 1250 cm-1 ν = 2100 cm-1 ν = 2400 cm-1 

“C
le

ar
” 

C
ld

: τ
>1

 
C

ld
: τ

<0
.5

 
C

ld
: 0

.5
<τ

<1
 



Cloud Effects on Retrievals: N. America – USA 

ν = 950 cm-1 ν = 1140 cm-1 ν = 1250 cm-1 ν = 2100 cm-1 ν = 2400 cm-1 

Data used:  IASI measurements July 2007-2010 (four-years) 
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Regional Statistics 

τ<0.5 τ>1.0 0.5<τ<1.0 

clear clear clear 

diff diff diff 

Asia - China 

τ<0.5 τ>1.0 0.5<τ<1.0 

clear clear clear 

diff diff diff 

North America - US 



IR Surface Emissivity Climatology Datasets  

Based on three-years IASI measurements (June 2007 – May 2010). 

Land Surface Emissivity:  5-D (Emis., Lat.,  Long., Spectral frequency, and Time) 
Land Surface Skin Temperature:  4-D (Temp., Lat.,  Long., and Time) 

Spatial resolution: 0.5x0.5 deg. Lat.-Long. (360x720=259200 grids) 
Temporal resolution: weekly (52 weeks). 
Spectral resolution: 0.25 cm-1 from 645 to 2700 cm-1 (every IASI spectral channels:  8461). 
Emissivity value  

 (or surface skin temp.) 

The datasets also can be separated between daytime (descending mode) and nighttime 
(ascending mode)  



IASI Derived 4-D LST (Temporal)  



IASI Derived 5-D LSE (temporal)  



LSE Seasonal Variation (950 cm-1): N. America   
The emissivity variation is coherent, which indicates that the emissivity variation is associated with seasonal 
changes of the weather or surface weather (i.e., rainfall modifying soil moisture or snowfall accumulating on 
the surface) and the varying ground cover with a different vegetation coverage.  



LSE Seasonal Variation (950 cm-1): Asia   
Each spring after a cold, sunny, windy, and dry winter, sandstorms strike Northern China and the yellow dust 
migrates from China’s interior (the Gobi and Ordos deserts) to its capital, Beijing, and eastern seaboard, thus 
decreasing the emissivity over wide regions while the ground is still very dry with minimum rainfall in the 
winter and early spring seasons.  



IASI Derived 5-D LSE (Spectral)  



IASI Derived 5-D LSE (Spectral)  

Nile Delta 



How about AIRS? 

Can we derive similar emissivity spectra from AIRS measurements? 

YES! 



AIRS SFOV Surf Emissivity at 1100 cm-1 

2008.07.06 
Granule 006 
Channel 1193 

Kalahari Site (26.42 S, 20.62 E) 

Namib Site (24.91 S, 15.54 E) 

AIRS Emissivity Retrieval Samples 
AIRS SFOV retrieval from 2008.07.06 Granule 001 (Emissivity map from AIRS Channel 1193).  retrievals 
compares with the mean laboratory result for the Namib and Kalahari sites, respectively. In the quartz doublet 
region between 1000 and 1200 cm-1, the emissivity spectra shape compares well with laboratory results and 
IASI results. 



AIRS vs. IASI Emissivity 
AIRS and IASI SFOV emissivity retrieval intercomparison from JAIVEx case (April 29, 2007).  Inter-
comparison of emissivity map at 1100 cm-1 shows that the agreement between the AIRS and IASI (longwave 
region) is within at ~0.01 or less.  Few point-to-point sample inter-comparison of spectral emissivity are 
plotted showing different land surface spectral emissivity captured by both AIRS and IASI. 



•  A state-of-the-art retrieval algorithm, dealing with all-weather conditions, has been 
developed and applied to IASI radiance measurements. Surface emissivity is retrieved 
using multi-stage linear EOF physical-regressions.  

•  Initial emissivity validation over the Namib and Kalahari deserts is performed. IASI 
Emissivity retrieval accuracy under clear-sky conditions is estimated that a STDE is 
about 0.02 and 0.04 for longwave and shortwave window regions, respectively.  

•  Results from IASI retrievals indicate that surface emissivity retrieved with satellite IR 
ultraspectral data can capture different land surface type properties. The seasonal 
variation of global land surface emissivity derived from satellite IR ultraspectral data is 
evident.  

•  Land surface emissivity data retrieved under clear and cloudy conditions are used to 
evaluate emissivity retrieval accuracy affected by the cloudy with different cloudy 
categories.  IR hyperspectral sounder (e.g., IASI) can provide good retrievals under the 
optically thin clouds with a cloud effective optical depth less then 0.5. 

•  We have initially developed an IR emissivity climatology database from three-years 
IASI measurements. 

•  Initial retrievals from AIRS data using the same retrieval technique is promising, 
showing expected emissivity spectral and spatial variations. 

Summary 


